Fun profunctor facts - companions, conjoints, collages

Companion and conjoint(1)

The companion and conjoint of a \(\mathcal{V}\) functor, \(\mathcal{P}\xrightarrow{F}\mathcal{Q}\)

Linked by

V-adjunction(1)

A \(\mathcal{V}\) adjunction.

A pair of \(\mathcal{V}\) functors, \(\mathcal{P}\overset{F}{\underset{G}\rightleftarrows} \mathcal{Q}\) such that: \(\forall p\in \mathcal{P}, q \in \mathcal{Q}: \mathcal{P}(p,G(q)) \cong \mathcal{Q}(F(p),q)\)

V-profunctor collage(1)

The collage of a \(\mathcal{V}\) profunctor, \(\mathcal{X}\overset{\phi}\nrightarrow \mathcal{Y}\)

Linked by

Companion and conjoint of identity(1)
Companion and conjoint of addition(1)

Linked by

Example 4-43 todo(1)

TODO

Exercise 4-36(2)

Check that the companion \(\hat{id}\) of the identity functor is actually the unit profunctor.

Solution(1)

TODO

Exercise 4-38(1)

Considering the addition example, what is the conjoint of this addition function?

Solution(0)

TODO

Exercise 4-41(1)

Let \(\mathcal{V}\) be a skeletal quantale and \(\mathcal{P}\overset{F}{\underset{G}\rightleftarrows} \mathcal{Q}\) be \(\mathcal{V}\) functors. Show that \(F \dashv G\) iff the companion of the former equals the conjoint of the latter, i.e. \(\hat F = \check G\)

Solution(0)

TODO

Exercise 4-44(1)

Draw a Hasse diagram for the collage of the profunctor:

Solution(0)

TODO