KRISTOPHER S. BROWN

+1 603 721 6541 \diamond kris@topos.institute https://krisb.org/docs/research.html

HONORS

UC Berkeley Guest Lecturer Practical abstract algebra for chemical engineers	2023
ICGT Best Paper Award Computational Category Theoretic Rewriting	2022
Topos Institute seminar speaker: Combinatorial representation of scientific knowledge	2022
JuliaCon speaker: Declarative data transformation via graph transformation	2022
SIAM Discrete Mathematics Speaker: Extending McKay's Canonical Isomorph Algorithm to C-Sets	2022
Catalysis and Modeling Symposium, Rungstedagaard DK: Combinatorial scientific knowledge (poster)	2022
ACT 2021 short talk: Implementing polynomial functors and mode-dependent dynamical systems in Co	atlab 2021
The Applied Category Theory Adjoint School (selected participant)	2021
Comput. Mat. Sci. Editor's Choice: Categorical data integration for computational science	2019
Applied Category Theory: Bridging Theory & Practice, at NIST (invited guest)	2018
CS230 Deep Learning: 1 st Prize Poster Award (Stanford University)	2018
National Defense Science and Engineering Graduate (NDSEG) Fellowship 2	017 - 2021
James B. Reynolds Scholarship for Foreign Study	2015
Phi Beta Kappa and Tau Beta Pi (Vice President of NH-B Chapter)	2014
American Chemical Society National Scholar2	012 - 2014

RESEARCH EXPERIENCE

Research software engineer, Topos Institute with Evan Patterson and Owen Lynch	2022-Present
\cdot Graphical linear algebra, scientific computing, categorical databases, generalized algebraic theorem	ies
Postdoctoral researcher, University of Florida Advisor: James Fairbanks	2021
Model-aware scientific computing, the double category of rewrite rules, regular logic automated theorem proving DPO rewriting + automorphism groups for C-Sets, generalized algebraic theories, sketches, polynomial functors	
Deep Learning / Logical Methods Research Intern, Google	2019-2020
 Higher order logic, proof search, model pruning, feature learning, custom hardware Lean Theorem Prover, separation logic, dependent type theory, formal software verification 	
Independent Studies in Philosophical Logic and Formal Methods, Stanford Univers Advisors: Thomas Icard and Clark Barrett	ity 2020
 Explainable AI, algebraic models of the explainability relation Satisfiability modulo theories, inductive datatypes, term rewriting, generalized algebraic theories 	5
Founder/CTO/Lead researcher, Modelyst LLC	2018-2021

 $\cdot\,$ Declarative programming, API design, knowledge representation, software development

RESEARCH EXPERIENCE - NATURAL SCIENTIFIC

Graduate Research Assistant, Stanford University Advisor: Jens Norskøv	2016 - 2021
\cdot Density functional theory, statistical learning under physics-informed constraints, surface chemistr	У
Scientific Modeling Visiting Scholar, École Polytechnique Fédérale de Lausanne Advisor: Jeremy Luterbacher	2015 - 2016
\cdot Catalysis synthesis, molecular dynamics, multi-scale modeling	
EDUCATION	
PhD in Chemical Engineering Stanford University	2021
Bachelor of Engineering in Chemical Engineering	2015
Bachelor of Science in Chemistry Dartmouth College, Magna cum laude	2014

PUBLICATIONS - COMPUTER SCIENTIFIC

• Owen Lynch, **K S Brown**, James Fairbanks, Evan Patterson. Gatlab.jl: Symbolic computing with categories using generalized algebraic theories. ACT 2023 (2023).

- · K S Brown, David I Spivak. Dynamic Tracing a graphical language for rewriting protocols. GCM 2023 (2023).
- **K S Brown**, *T Hanks*, *J Fairbanks*. Compositional Exploration of Combinatorial Scientific Models. Applied Category Theory 2022 (2022).
- S Wu, **K S Brown**, S Libkind. Individual.jl: a Julia package for specifying and simulating individual-based models based on graph rewriting. Applied Category Theory 2022 (2022).
- **K S Brown**, *T Hanks*, *E Patterson*, *J Fairbanks*. Computational category-theoretic graph rewriting. International Conference on Graph Transformation (2022).
- M Mann, A Wilson, Y Zohar, L Stuntz, A Irfan, K S Brown, C Donovick, A Guman, C Tinelli, C Barrett. Smt-Switch: A Solver-agnostic C++ API for SMT Solving. 24th International Conference on Theory and Applications of Satisfiability Testing: SAT (2021).
- M Mann, A Irfan, F Lonsing, Yahan Yang, H Zhang, K S Brown, A Gupta, C Barrett. pono: a Flexible and Extensible SMT-based Model Checker. 33rd International Conference on Computer-Aided Verification: CAV (2021).
- *M J Statt*, **K S Brown**, *S Suram*, *L Hung*, *J Gregoire*, *B Rohr*. DBgen: A Python Library for Defining Scalable, Maintainable, Accessible, Reconfigure, Transparent (SMART) Data Pipelines. *SoftwareX* (2021 - in preparation).
- *M J Statt, B A Rohr,* **K S Brown**, *D Guevarra, J Hummelshoej, L Hung, A Anapolsky, J M Gregoire, S K Suram.* ESAMP: Event-Sourced Architecture for Materials Provenance management and application to accelerated materials discovery. (2021 in preparation).
- **K S Brown**, D I Spivak, R Wisnesky. Categorical data integration for computational science. Computational Materials Science (2019).
- L Hung, B Rohr, K S Brown, M Statt, P Herring, A Bhargava, H Kwon, S Suram, M Aykol, J Hummelshoej.
 Deep neural networks to accelerate and reproduce DFT. APS Abstracts (2019).

PUBLICATIONS - NATURAL SCIENTIFIC

- · A Krishnapriyan, K S Brown. Sensitivity Analysis of Tight-Binding Theory Parameters. (2022 in preparation).
- **K S Brown**, *Y Maimaiti*, *J Voss*, *T Bligaard*. MCML: Combining physical constraints with experimental data for a multipurpose metageneralized gradient approximation. *Journal of Computational Chemistry* (2021).
- T Ludwig, J A Gauthier, C F Dickens, **K S Brown**, S Ringe, K Chan, J K Norskov. Atomistic Insight into Cation Effects on Binding Energies in Cu-Catalyzed Carbon Dioxide Reduction . Nature Communications (2019).
- X Liu, P Schlexer, J Xiao, Y. Ji, L. Wang, R B Sandberg, M. Tang, K S Brown, H. Peng, S Ringe, C Hahn, T F Jaramillo, J K Norskov, K Chan. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nature Communications (2019).
- T Ludwig, J A Gauthier, K S Brown, S Ringe, J K Nrskov, K Chan. Solvent adsorbate interactions and adsorbate specific solvent structure in carbon dioxide reduction on a stepped Cu surface. Journal of Physical Chemistry C (2019).
- · **K S Brown**, *C Saggese*, *B P Le Monnier*, *F Heroguel*, *J S Luterbacher*. Simulation of Gas-and Liquid-Phase Layer-By-Layer Deposition of Metal Oxides by Coarse-Grained Modeling. *Journal of Physical Chemistry C* (2018).
- F Heroguel, B P Le Monnier, K S Brown, J C Siu, J S Luterbacher. Catalyst stabilization by stoichiometrically limited layer-by-layer overcoating in liquid media. Applied Catalysis B: Environmental (2017).
- · D Chen, K Chen, K S Brown, A Hang, J X J Zhang. Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting. Applied Physics Letters (2017).

SKILLS

Programming Languages	Julia, Python, SQL, Haskell, Lean, Coq, Prolog, C++
Languages	Spanish, German, French (beginner level)
Scientific Software	VASP, Quantum Espresso, Gaussian 09, COMSOL, SolidWorks, Aspen Plus

TEACHING ASSISTANTSHIPS

Stanford University (Energy and mass transport)	Spring 2020
Stanford University (Energy: Chemical Transformations for Production, Storage, and Use)	Winter 2018
Thayer School of Engineering at Dartmouth College (Chemical Engineering Fundamentals)	Fall 2015
Dartmouth College (Organic Chemistry)	Fall 2012