
Hi, I want to talk about this useful algorithm which computes a canonical
representative of a graph's isomorphism class and show a small generalization
to the data structures we frequently use in our research group.

1

Brief background about me, since I’m a bit out of place here at a discrete math
conference.

I’m a postdoc working with UF and the Topos Institute, where we have a team of
applied mathematicians and engineers building a software ecosystem called
AlgebraicJulia, where we use category theory and combinatorial data
structures to solve problems in scientific computing.

2

Scientific knowledge, when it's formalized at all which is rarely, often comes in the
form of either mathematical expressions, formal logic, or code. These are all
nice things, but our point of view is that a large fraction of the knowledge can
have its syntax and semantics separated, where a lot of the knowledge can be
encoded in a syntax of combinatorial data structures.

This has some broad advantages, because it's a lot easier to reason about
combinatorial data structures than it is to perform analysis on arbitrary
code/logic/mathmatical expressions, in particular, the knowledge can be
automatically transfered, is transparent to analysis, can be more hierarchically
composable, and can be much more general, because you can easily vary the
syntax and semantics independently and gain a lot of mileage from that.

3

I have some examples on this slide, there are many more in a recent talk I gave on
Youtube at the Topos institute

4

5

6

So this is the plan, to motivate why we want to generalize McKay's popular graph
algorithm, I'll introduce the new level of generality and walk through the main
pieces of it.

This is quite new work so a lot of what I have to say about performance is
preliminary or conjectured, but I want to touch upon that as well as some
more conceptual takeaways.

7

So the problem I want to solve is prompted by this question of when two things
are the ‘same’.

Some things are “literally” not the same but, in a certain context, we wish to treat
them as the same.

While I think there are lots of interesting real life and philosophical examples of
this, I want to jump right to the where this shows up in programming.*CLICK*

There we often define datatypes and have the option of defining what procedure
we want to run to test whether two instances of that type are equal.*CLICK*

There’s usually some default option, but it might not be right. *CLICK*
For example, often it just checks equality of reference for a user defined

datatype.*CLICK*
For its built in data types, it can do smarter things.*CLICK*

8

When we start trying to represent mathematical objects in code efficiently, we find
that the literal equality is not what we want. For example, I may want to
represent this set as a vector. This is quite a bad thing to do considering that it
imposes an order on elements which truly have no order, and it doesn’t
enforce there being no duplicates, so why would we do this?

9

It allows me to represent FUNCTIONS between sets very efficiently. For each
element of the domain, the corresponding vector element can say which
element of the codomain it’s sent to. So, again, set theoretically, it's the same
set if it's ['b','c','a'] or ['a','a','b','c'], but you'd have to tell your programming
language that you want to sort and remove duplicates before checking
equality, for example.

10

Graphs also have a few ways we can efficiently represent. But if it’s no longer the
same graph if we reorder the vertices or the edges, that is at odds with how we
think of the graph. If I drew this graph differently and shifted positions of
vertices, it'd be the same graph for the purposes of a graph theorist, but not an
artist. So that’s what’s interesting: the context is really important! It’s also
interesting that here math is really being prescriptive, rather than merely
descriptive, in virtue of you choosing to refer to this thing on your computer
with the graph theorist’s word.

11

These are all very standard objects of study in math/cs, but what about a scientist
who has some custom data structure representing their domain of interest?

We want it to be natural to declare datatype along with the context of its use such
that a non-computer scientist will automatically get the right notion of
equality.

Our running example will be a chemical reaction, such as this one that says two
water molecules react to produce oxygen and two hydrogen diatomic
molecules. A chemist’s natural representation of this using built-in datatypes is
also shown below.

12

Our working example problem is the following: we have a particular reaction of
interest and a database with millions of such reactions.

We want to test if the reaction is in the database, but this not as simple as testing
the literal equality of our data structure

13

We need to be flexible with respect to all sorts of permutations.

14

But there is important information that must be satisfied for our query to consider,
most importantly the connectivity of atoms and bottoms.

15

So how do we tackle this problem in great generality, such that we can handle
things as diverse as graphs and chemical reactions as special cases?

Applied category theory is very useful here. If you’re not familiar with category
theory, I’ll try to introduce it without getting bogged down in details, because
we are really only going to use some of its most basic ingredients.

First: how to think of category theory in relation to other branches of math you
may be more familiar with?

16

You can think of set theory as axiomatizing some object that gives us the minimum
language needed to talk about membership.

Likewise axiomatizing a group can be thought of as giving us the minimum
language needed to talk about symmetry, thus group theory becomes the
study of symmetries.

Graphs are a minimum language to talk about connectivity.
And so, by analogy, I could introduce category theory as the minimum language

that lets us talk about composible processes.

17

One really important choice for what those composable actions are would be
structure-preserving maps.

If you study some domain purely by looking at the structure-preserving maps, you
end up at the domain structurally. This is why another characterization of
category theory is that it is the study of ‘structure’. Given that other branches
of math concern themselves with studying the structure of their object of
interest (e.g. group theorists are interested in the Klein 4 group, but they don’t
particular care what four elements are in the group’s set), this allows some to
think of category theory as the simplest language which lets us model other
branches of mathematics.

18

In fact, each of these branches of math can be itself viewed as a category with
structure preserving maps.

So a lot of cool things come about from being able to connect all these disciplines,
such as realizing that the Cartesian product of sets is really the same product as
multiplying numbers, or the product of groups, or the greatest common divisor
etc.

19

Because category theory tells us what the right notion of isomorphism is for a
given category, if we model our domain as a category then we get a notion of
sameness for free.

20

I’m going to introduce C-sets, which are a particular type of category which have a
well-defined, computable notion of equivalence but also are incredibly
expressive, enough to handle most basic scientific and engineering models.

They generalize many flavors of graphs, tabular data, as well as combinations of
the two. If you’re not familiar with relational databases, they have been the de
facto standard of data modeling in professional applications over the past forty
years.

21

A C-Set isn’t a specific data type, but rather once you provide a “C”, you get a data
type. This “C” plays the role of a schema for a relational database.

The category theoretic definition of a C-set is a functor from C (which is a category)
to Set. But all that means is that you assign a set for each vertex in C, a function
for each edge in C, and you also satisfy equational laws that C has. Let me show
some examples.

22

Here on the top left is the schema for graphs. If you plug this in as “C”, a C-set
contains the data of a graph. Note we are using that strategy of representing
sets as just vectors [1,2,3,...] and functions as vectors. If we want to represent
this graph here at the bottom, we say that the edge and vertex sets have three
elements, and these functions here define source and target.

23

Slightly more complicated is this schema for bipartite graphs. We visualize these by
making one vertex type blue and the other orange, and we have two types of
arrows each with their own source and target functions.

24

As a side note, despite the variety of things that can be expressed, Julia allows for
these data types to be implemented efficiently.

For example, consider the C-set which encodes sparse graphs
This was benchmarked against Julia’s native graph library, Lightgraphs, and

performed competitively.

25

Just two more examples. This first one would be a C-set to define two-dimensional
semisimplicial sets. This allows us to talk about graphs where SOME triples of
edges can form triangles.

26

Here’s a smaller example of something we can represent. Two triangles which
share one of their edges.

27

The database style representation looks like this. Note we have two triangles, five
edges, and four vertices.

28

It’s important to build tools at the level of generality of C-sets rather than just
graphs because now we can faithfully represent these chemical reactions.

For example, consider this schema. We’re saying there are many atoms per
molecule and many bonds per atom. We can do a little trick to ensure that the
bonds are symmetric by having two elements of the bond table correspond to
each bond we visualize. We give a function “inv” which points these pairs of
bonds at each other, using the equation inv;inv=id to enforce this property.

DRAW THE HALF EDGE BOND

29

So to see it in action, here is the example we’ve been looking at viewed as a C-Set.

30

Also, we can look at the Catlab code for declaring this schema. This software
allows us to declare C-sets and perform category theoretic constructions using
them.

31

C-sets are a generalization of typed graphs, although they are closely related. We
can faithfully convert a C-Set like the one on the bottom into the typed graph
above. Because this conversion is faithful in a way that category theory can
make precise, many algorithms that operate on typed graphs will compute the
correct thing for C-sets.

On the right, there is a valid typed graph but it’s not a valid C-set for a variety of
reasons, for example there are multiple edges assigned as delta-2 of t1, and e1
has zero vertices assigned as its source.

32

On the right, there is a valid typed graph but it’s not a valid C-set for a variety of
reasons, for example there are multiple edges assigned as delta-2 of t1, and e1
has zero vertices assigned as its source.

33

It is a valid C-set on this schema, where we’ve replaced all the arrows with a span
of arrows, i.e. replaced functions with relations. So while C-sets can handle the
looseness of relations by choice, it is more expressive because it can encode
the constraint of functions.

34

13 min

35

We’ll focus on the case where there are no attributes (which are very easy to
incorporate).

So this algorithm computes a canonical ordering of vertices in the case of a simple
graph.

For a C-Set, a automorphism translates into a separate permutation of each of the
underlying sets that preserves the structure.

36

Automorphism is a bijection (every vertex has own color) – here we have
surjections – mult have same color

Colorings of graphs are a kind of generalization of permutations. If our colors are
ordered, then a permutation is when every vertex has a different color, but
maybe we don't have a complete permutation yet, we just have partial
information. So that Here if I know the top two vertices come before the
bottom two but I don't know the relative ordering within each group, I could
characterize this by coloring the two pairs like so.

As I learn more information, I can refine this partitioning and get a fine coloring,
which eventually will lead to a partition.

So color saturation is a procedure which takes in a coloring attempts to refine it,
i.e. bring us closer to a permutation. It does this by looking at the local
connectivity info, for example, here the corner is green, and I can then use this
to distinguish the edges which have zero green neighbors or one green
neighbor. This allows me then distinguish things again, and so on until this
process hits a dead end, which is called an equitable coloring.

So that's how it works for graphs. C-sets also have a notion of local connectivty,

37

which is apparent when you view a C-set as a kind of typed graph. We can
consider the local connectivity info which is used to distinguish vertices as its in
neighbors and its out neighbors for each kind of edge.

37

Automorphism is a bijection (every vertex has own color) – here we have
surjections – mult have same color

Colorings of graphs are a kind of generalization of permutations. If our colors are
ordered, then a permutation is when every vertex has a different color, but
maybe we don't have a complete permutation yet, we just have partial
information. So that Here if I know the top two vertices come before the
bottom two but I don't know the relative ordering within each group, I could
characterize this by coloring the two pairs like so.

As I learn more information, I can refine this partitioning and get a fine coloring,
which eventually will lead to a partition.

So color saturation is a procedure which takes in a coloring attempts to refine it,
i.e. bring us closer to a permutation. It does this by looking at the local
connectivity info, for example, here the corner is green, and I can then use this
to distinguish the edges which have zero green neighbors or one green
neighbor. This allows me then distinguish things again, and so on until this
process hits a dead end, which is called an equitable coloring.

So that's how it works for graphs. C-sets also have a notion of local connectivty,

38

which is apparent when you view a C-set as a kind of typed graph. We can
consider the local connectivity info which is used to distinguish vertices as its in
neighbors and its out neighbors for each kind of edge.

38

Automorphism is a bijection (every vertex has own color) – here we have
surjections – mult have same color

Colorings of graphs are a kind of generalization of permutations. If our colors are
ordered, then a permutation is when every vertex has a different color, but
maybe we don't have a complete permutation yet, we just have partial
information. So that Here if I know the top two vertices come before the
bottom two but I don't know the relative ordering within each group, I could
characterize this by coloring the two pairs like so.

As I learn more information, I can refine this partitioning and get a fine coloring,
which eventually will lead to a partition.

So color saturation is a procedure which takes in a coloring attempts to refine it,
i.e. bring us closer to a permutation. It does this by looking at the local
connectivity info, for example, here the corner is green, and I can then use this
to distinguish the edges which have zero green neighbors or one green
neighbor. This allows me then distinguish things again, and so on until this
process hits a dead end, which is called an equitable coloring.

So that's how it works for graphs. C-sets also have a notion of local connectivty,

39

which is apparent when you view a C-set as a kind of typed graph. We can
consider the local connectivity info which is used to distinguish vertices as its in
neighbors and its out neighbors for each kind of edge.

39

This is how color saturation would work with our initial data, which has perfect
symmetry among each of the molecules, bonds, and atoms.

40

This is how color saturation would work with our initial data, which has perfect
symmetry among each of the molecules, bonds, and atoms.

41

This is how color saturation would work with our initial data, which has perfect
symmetry among each of the molecules, bonds, and atoms.

42

Search tree exploration is the next step of the algorithm.

Here’s an example of a graph for which color saturation has hit a dead end. There
is no way to use the structure of the graph to break the symmetry for us.

Our original problem was finding the automorphisms of a graph with V vertices,
which could be solved brute force by looking at all V factorial permutations.

Color saturation reduced this somewhat by eliminating some of the possible
permutations. We really can consider the colors independently, giving this
formula.

So we have to artificially break the symmetry.

This incremental exploration of this set of permutations would not save us
anything if it weren’t for the fact that we can run color saturation at every step,
which significantly reduces the number of permutations we need to consider.

43

Search tree exploration is the next step of the algorithm.

Here’s an example of a graph for which color saturation has hit a dead end. There
is no way to use the structure of the graph to break the symmetry for us.

Our original problem was finding the automorphisms of a graph with V vertices,
which could be solved brute force by looking at all V factorial permutations.

Color saturation reduced this somewhat by eliminating some of the possible
permutations. We really can consider the colors independently, giving this
formula.

So we have to artificially break the symmetry.

This incremental exploration of this set of permutations would not save us
anything if it weren’t for the fact that we can run color saturation at every step,
which significantly reduces the number of permutations we need to consider.

44

Search tree exploration is the next step of the algorithm.
Here’s an example of a graph for which color saturation has hit a dead end. There

is no way to use the structure of the graph to break the symmetry for us.
Our original problem was finding the automorphisms of a graph with V vertices,

which could be solved brute force by looking at all V factorial permutations.
Color saturation reduced this somewhat by eliminating some of the possible

permutations. We really can consider the colors independently, giving this
formula.

So we have to artificially break the symmetry.
This incremental exploration of this set of permutations would not save us

anything if it weren’t for the fact that we can run color saturation at every step,
which significantly reduces the number of permutations we need to consider.

45

So again it's a very straightforward generalization from graphs to C-sets because
this idea of breaking a symmetry of a color extends nicely. We just have to
break the symmetry of one of our sets (in this case, Molecules, Atoms, or
Bonds) at a time.

46

The last primary tactic in McKay's algorithm (though there are many other
performance boosting techniques) is called automorphism pruning. This allows
us to recognize a branch of the search tree as degenerate in some way, not
really providing any new info.

On the previous slide, you might have noticed that we branched on two identical
molecules. Intuitively, we are going to repeat work by treating those as
completely independent. However, after exploring one of those two molecules
depth first search style, we'll have found an automorphism which witnesses
the fact that the two branches are equivalent, and essentially this notion of
checking all the automorphisms you've found against a new branch you're
about to explore will save you.

While this technique was developed with graph homomorphisms in mind, the
argument works equally well for C-set homomorphisms, so we can use the
technique, too.

Because the algorithm is algebraic (works with concepts like automorphism
groups) – c-sets are the generalization of

Bipartite matching algorithms / augmenting paths – that part won’t be as easy to
generalize.

47

Presently, a chemist with a rich data structure like their chemical reaction would
have to convert their input into a graph and feed to nauty in order to use
existing software.

So a simple benchmark we can perform is to compare how our algorithm runs on
C-sets vs their encoding as typed graphs. We see straightforward relationships
of speeds up 2-3x and memory savings in virtue of the C-set representation.

More work is needed before we can try comparing our work directly against nauty.

48

We have reasons to believe a mature implementation of this algorithm would
favorably compare against nauty, for problems that have a richly structured
schema (not for graphs). One simple reason for this is the memory layout of C-
sets (which are represented as databases).

However there are other things we can take advange of too, uniquely for C-sets.
We can analyze the schema and set the canonical order in such a way that we
can prune branches early.

49

50

one of the main takeaways we get from this project is that, while it's possible to
reduce one's problem to a simple form, such as a graph for nauty, or perhaps
some rich higher order logical formula which si reduced to first order logic so
that a well-optimized solver can handle. An alternative is to generalize the
algorithm itself, which has the potential to be faster by taking advantage of
higher-level structure that gets lost when you squash your problem down to
the simple format.

We've already found great use for this algorithm in the case of scientific model
explroation, where for example, epidemiologists may be exploring possible
chemical reaction networks to represent the dynamics of some disease, that
this is a branching search process that may hit upon repeats. It's important to
be able to work with these scientific models up to isomorphism, to reduce the
branching factor.

51

52

