
Hi, I’m excited to share some recent work performed at UF with James Fairbanks 
and Tyler Hanks in collaboration with Evan Patterson at the Topos Institute. 
Together we’ve released this package, AlgebraicRewriting, which implements 
an algebraic technique called graph transformation. This is part of a software 
ecosystem called AlgebraicJulia.
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At a high level, the library allows you to declare and execute rewriting systems. 

*click*So the important questions I want to answer here are what problems can be 
solved with rewriting systems, how do you actually use this software, and 
some of the unique advantages of this approach.

*click*In short, the technique is a declarative language for transforming data in a 
very controlled way. 

The language of specifying how to transform data of type X is to draw patterns and 
substitutions which are also instances of type X, whatever that may be.

And this offers virtues of transparency, generality as it is applicable to wide 
varieties of data structures, and transferability 

(meaning you can do you work with some data structure, and then realize you 
need to radically change that structure in some way, but there is a way to 
migrate your rules into the new formalism in a way that’s not possible to do 
when expressing data transformation as code).

*CLICK* So let’s start getting into more detail about the first point, which was: 
what this is used for?
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In general, we have some possibly complex data structure and we want to modify 
it. Of course, you can write imperative code to do such a thing, but the closest 
analogue which is declarative would be SQL. 

There you can imagine writing a query that identifies part of your data structure to 
change, and then performs an update based on what the results of the query 
were.

*click* I’ll try to highlight three kinds of things you could do with it before picking 
one to dive deeper into. These three things are performing simulations, 
generating structures via a grammar, and equational reasoning. 
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So our first example of something you can do with graph transformation is to set 
up a rewriting system by defining a set of so-called rewrite rules.

For example, you could encode your knowledge of organic chemistry into a set of 
reactions that look like this. 

Once you’ve defined the data structure for your molecules, AlgebraicRewriting lets 
you define rewrites in terms of those molecules like here.

*CLICK* Now with these defined, you can initialize a state of some system (a bath 
of molecules) and apply the rewrites at predetermined frequencies 

You can then chart the trajectories of the various concentrations of molecules. 
Here’s An example showing how all three rewrites rules could be instantiated 
to this particular 

Molecule and be applied to produce different results.
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The next application is generation of structures via a grammar. Here, we could 
have a variety of intentions that are associated with exploring some possible 
space of structures.

For example, if I define a datatype for my scientific model of interest (perhaps a 
chemical reaction network, because I have chemical concentration time series 
data), 

I want to generate hypotheses to test against that data, but I don’t want to 
generate things completely randomly. Defining rewrite rules that smartly 
explore the space 

Of chemical reaction networks is very helpful here.

Or we can represent the state of a robot and define rules such as “if you see this, 
do that” and explore the possible states the robot can get into.

This is high-level planning that can root out some nasty conceptual flaws at the 
best possible time, which is before any code needs to be written. 

This paradigm is sometimes called model-driven development.

And relatedly, you might want to have a controlled exploration of some rich 
datatype if you’re writing code which is supposed to handle 

Instances of such a datatype. This is generally more robust than simple unit tests 
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where you pick a particular input to test your function
On and then hope for the best.

As an example, I have on the right a figure from a paper that shows a deep 
connection between Feynman diagrams and graph grammars, 

Showing how you can generate all Feynman diagrams by applying some simple 
rules. 
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The last example I want to highlight is equational reasoning.  This is 1*x*x*1
*click*Here the semantics of a rewrite rule is to say: X is equivalent to Y means I 

can replace X with Y whenever I see it.
However we can also do this in a non-destructive way when we represent 

expressions as wiring diagrams, where you view information flowing from left 
to right, and the boxes as operations.

For example, here we have the expression X times 1, and if we were to assert an 
equivalence between this and a bare wire which simply passes along its input, 
this would be 

Equivalent to adding a wire which connects “x” to “x*1”, which tantamount to 
asserting their equivalence in this wiring diagram language.

*CLICK* So now let’s apply this to a real term which is 1*x times x*1 
*CLICK* we see that applying the rewrite rule has added the information of the left 

identity rule to our graph by collapsing certain nodes together.
*CLICK* applying a right identity rule allows us to see that our result is computable 

merely as x*x which is an optimized program relative to the starting point.
This process is also called “equality saturation” in the language of e-graphs, which 

is a great technique for maintaining lots of information about equivalent 
expressions in a compact way.
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Hopefully that showed that these kinds of methods can be applied in diverse 
settings. 

Now I want to talk more about a particular example to show what it's like to code 
up such a rewriting system.
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So I’ll walk through the process of using AlgebraicRewriting to perform a chemistry 
simulation. 

The three major steps are presented here. We’ll start with defining the data 
structure which we will perform rewrites on.
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So I need to introduce C-sets, which are an important kind of datatype that we 
widely use in AlgebraicJulia. We’re not limited to rewriting on C-Sets but as 
we’ll see, they are very general and suffice for most practical applications 

They generalize many flavors of graphs, tabular data, as well as combinations of 
the two. Because they are at least as expressive as relational databases, that’s 
why I say they are expressive enough for practical purposes.

A C-Set isn’t a specific data type, but rather once you provide a “C”, you get a data 
type. This “C” plays the role of a schema for a relational database. 

The “C” comes from “Category” because the things we do with our data structure 
are based on the math of category theory, but don’t worry you don’t need to 
know any category theory to fluently use these data structures
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Here on the bottom left is the schema for graphs. If you plug this in as “C”, a C-set 
contains the data of a graph. Note we are using that strategy of representing 
sets as just vectors [1,2,3,...] and functions as vectors. If we want to represent 
this graph here at the bottom, we say that the edge and vertex sets have three 
elements, and these functions here define source and target.
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Slightly more complicated is this schema for bipartite graphs. We visualize these by 
making one vertex type blue and the other orange, and we have two types of 
arrows each with their own source and target functions.
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This C-Set allows us to talk about graphs where SOME triples of edges can form 
triangles. Note we can have path equations in our schema, which is 
expressibility not present in databases. These equations make sure our triples 
of edges actually form triangles.
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Here’s a smaller example of something we can represent. Two triangles which 
share one of their edges.
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The database style representation looks like this. Note we have two triangles, five 
edges, and four vertices.

14



So now let’s return to our chemistry problem. The trickiest issue here is 
representing chemical bonds as undirected. Although directed graphs were 
very easy to represent, with two sets and a src+tgt function, undirected graphs 
can be encoded by having a Bond table where two different rows of the table 
get used to represent a single bond. 

We require an involution function on the set of Bonds to make sure that they are 
paired up.

The code on the screen shows how Catlab lets you declare a custom data type like 
this. 

*CLICK* You see here we’ve represented a pattern with a water molecule and a C-
F bond. Constructing instances of this datatype can be done in many ways, 
ranging from low-level imperative operations to high level constructions. t In 
any case, you just need to construct this database instance here. Now we want 
to create the rewrite rules.
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We need a brief detour to explain the mathematical theory of graph rewriting. This 
requires us to have a notion of a partial mapping from one thing to another. 
Let’s start with the most familiar case of this, which is partial maps between 
sets. It’s just a function that does not need to be defined on all inputs. 
Interestingly we can represent such a partial function using two total functions, 
as shown on the right. Note we also require the leftward facing function to be 
injective for this to make sense.  

*CLICK* With that, we can talk about a C-Set rewrite rule as being defined by 
simply a partial map from L to R. We have a left hand C-Set, which is the 
pattern we want to match to something within the instance we are rewriting. 
We have the intermediate C-Set “I”, which identifies the things we are NOT 
deleting, and then we are mapping the things that we don’t delete into R, 
which is the thing we are replacing the pattern with. 

Given a match “m” into our data that we are trying to rewrite, the pushouts of the 
name are very general ideas from category theory that allow us to write one 
implementation for rewriting that can be specialized in a very broad variety of 
contexts. No deep understanding of how to define this generically is needed 
though. You can see in this particular example we are matching a pair of 
triangles and flipping the internal edge, and in our actual system of interest we 
are applying that transformation to the leftmost pair of triangles.

*click* you can see the library exposes this high level rewrite interface. You get a 
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Rule by declaring a partial function as a pair of maps. Note that Catlab can find 
the map for you, and you can give it extra information to narrow down the 
options if it’s ambiguous. You then can either explicitly provide a match or let it 
be found automatically. In any case, it’s easy to perform an individual rewrite!
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Before moving on to the scheduling of some set of rewrites as a rewrite system, I 
want to draw attention to some alternatives to double pushout rewriting. DPO 
is usually sufficient, but there are some alternative semantics we can give our 
rewrite rules. First we discuss single pushout rewriting, where I’m omitting the 
“I” column of the partial maps for brevity. The difference between SPO and 
DPO is how you handle the following edge case: what happens when you 
delete something that is connected to other things. In the case of this picture, 
I’m deleting the blue vertex, yet the blue vertex is connected to part of the 
mesh that is not matched by our L pattern. We aren’t told explicitly what to do! 
DPO would simply forbid this as a rewrite – it only lets you delete things that 
you’re implicitly deleting. SPO is more liberal about things and will CASCADE 
delete anything that is incident to something that gets deleted.

*click* Sesqui pushout rewriting is the third major paradigm of rewriting, and the 
practical difference with the previous two is that it let’s you copy things 
implicitly. So if I take this triangle and I duplicate the point on the left, imagine 
me dragging it over to the right hand side – SqPO will impliclty copy everything 
incident to that point, meaning we get a whole other triangle generated by this 
rewrite.

*click*There are situations in which different rules call for different kinds of 
rewriting, even in the same simulation. This is why the semantics of the rewrite 
rule is data attached to the rule itself, and the interface for using the rule is 
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identical.
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You can get a lot of mileage out of the language I’ve just described, but I’ve found 
that more features are helpful for using rewriting to accomplish practical 
computations.

Firstly, you may want to match certain attributes without knowing exactly what 
they are ahead of time. In the case of our chemistry example, the only 
attribute in the schema is the atomic number (in a database, we think of 
attributes as plain old columns with real-world data, rather than foreign keys 
pointing to some other table). Technically speaking, maps between C-Sets are 
required to agree exactly on attributes, so if you label an atom as carbon in 
your pattern, it can only match with carbon atoms. But what if we want to 
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Negative application conditions add an extra map to the rewrite rule with the 
following meaning: it embeds the pattern L in some larger context that 
specifies when NOT to apply the rule. Basically, when we find a match to G, we 
need to check if there exists a map from N to to G such that this triangle 
commutes, i.e. does there exist a squiggly map such that taking the ‘n’ 
morphism and then the squiggly morphism is identical to taking the match 
morphism ‘m’.

A chemistry-relevant instance of this is the “tert butyl” group, which chemists use 
to prevent reactions from happening at certain parts of a molecule they wish 
to prevent. It’s a big bulky thing that blocks even reactive molecules like 
fluorine.  By adding this NAC, we can better represent the underlying 
chemistry.
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If we noticed after doing our simulation for 100 steps that the octet rule was not 
being satisfied by some of our molecules (suppose we expect this to be the 
case), it could be an ordeal to search through source code to try to identify the 
root cause of the bug.

However, with our dynamics specified by the rewrite rules expressed as concrete 
structures, we can write a simple function to go through our rewrite rules and 
identify which one is causing the problem – data is much easier to analyze with 
automation than code.

*click* On the subject of transferability, I want to highlight a few variations we 
could make on our schema.
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I’d like to thank all these people for welcoming me and being such fun 
collaborators!
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