
Hi, so we’ve written a quite applied paper which I want to talk about, but I also 
want to take this chance to share our broader vision of applied category 
theory.

So in fact I’ll start with that overview to give some context into how we view this 
graph transformation project.

1



So we are trying to reform various practices in the real world, where a lot of 
scientific and engineering tasks are being represented in very opaque formats 
that make automatic reasoning and analysis nearly impossible. An example is 
the random scripts that a scientist might string together to perform a 
simulation of a chemical reaction network, as shown here. Although it might 
seem like a rigorous model in the language of mathematics or formal logic 
would be an improvement, we actually view these on par with each other, as 
they are all perfectly formal languages, perfectly powerful syntaxes, and 
therefore very hard to reason about. 

Some brave people work on that, but, rather, we want to design software that 
allows people to work in restricted syntaxes that can be reasoned about, so 
that we can do things like update assumptions in a meaningful way, explore 
spaces of models, generate code automatically, check for equality and 
substructure relations, and easily alter the semantics.

Our paradigm example for this kind of thing is the representation of chemical 
reaction networks as Petri nets.

2



Here’s an example with the SIR epidemiology model, where the blue dots say that 
there exist susceptible, infected, and recovered people. The left box is a 
transition that says a susceptible person can combine with an infected person 
to make two infected people, and the other box says infected people recover 
at some rate.

We can actually use a trivial version of DPO that operates on sets rather than 
graphs and generate rules which can perform a discrete time simulation. 
Looking at each transition gives us such a rewrite rule.

3



We can also have a syntactical notion of constrained Petri nets by considering slice 
categories. The set of Petri nets with a morphism into this particular model 
here are those which have labeled their states as either host or vector, and the 
only allowable transition types are ones that have one host in, one host out, 
one vector in one vector out, or a host and vector interacting. If you said “this 
is my class of models” and handed this off to your coworker who then added a 
transition which converts hosts into vectors, you’d have an automatic 
procedure for checking whether or not it’s a valid model, which is something 
we lose when we say the model is the code that performs the simulation, or if 
we work in a completely unconstrained mathematical language like ODEs.

JAMESHAS BETTER PIC

4



It also turns out that basic notions of limits and colimits correspond to useful 
concepts when we’ve modeled our domain as a category.

5



Here I show not a product of individual models but a product of diagrams, where 
the category of diagrams in Petri have as objects functors into Petri.

We have an entire ‘dimension’ so to speak of transportation models and a whole 
dimension of disease models.

If this process were coded up in a script, it would look like a nested for-loop for 
each dimension. But now we’ve represented that process algebraically and can 
compose it with other kinds of model space constructions (which are usually 
limits or colimits in the category of diagrams, but could also come from graph 
transformation specialized to this category. 

6



The picture form has a special advantage in that it is is compositional – you could 
take the query on the left and substitute it into the query on the right. 

SQL code in contrast, doesn’t let you do this kind of substitution (you’d have to 
write a special purpose algorithm to handle all the edge cases)

7



Generality is also related to transferability. If one's model of the world updates and 
you want to migrate your infrastructure from the old to the new, it’s possible 
to do this knowing just from declaring the relationship of the structure of the 
old data to the new data. 

In particular we can migrate a set of rewrite rules from one model to another if 
this can be done functorially.

This can’t be done when the model is a uniform block of arbitrary programming 
language code.

8



9



10



A C-Set isn’t a specific data type, but rather once you provide a “C”, you get a data 
type. This “C” plays the role of a schema for a relational database. 

The category theoretic definition of a C-set is a functor from C (which is a category) 
to Set. But all that means is that you assign a set for each vertex in C, a function 
for each edge in C, and you also satisfy equational laws that C has. Let me show 
some examples. 

11



Here on the top left is the schema for graphs. If you plug this in as “C”, a C-set 
contains the data of a graph. Note we are using that strategy of representing 
sets as just vectors [1,2,3,...] and functions as vectors. If we want to represent 
this graph here at the bottom, we say that the edge and vertex sets have three 
elements, and these functions here define source and target.

12



Slightly more complicated is this schema for bipartite graphs. We visualize these by 
making one vertex type blue and the other orange, and we have two types of 
arrows each with their own source and target functions.

13



As a side note, despite the variety of things that can be expressed, Julia allows for 
these data types to be implemented efficiently.

For example, consider the C-set which encodes sparse graphs 
This was benchmarked against Julia’s native graph library, Lightgraphs, and 

performed competitively.

14



Just two more examples. This first one would be a C-set to define two-dimensional 
semisimplicial sets. This allows us to talk about graphs where SOME triples of 
edges can form triangles.

15



Here’s a smaller example of something we can represent. Two triangles which 
share one of their edges.

16



The database style representation looks like this. Note we have two triangles, five 
edges, and four vertices.

17



So now let’s return to our chemistry problem. The trickiest issue here is 
representing chemical bonds as undirected. Although directed graphs were 
very easy to represent, with two sets and a src+tgt function, undirected graphs 
can be encoded by having a Bond table where two different rows of the table 
get used to represent a single bond. 

We require an involution function on the set of Bonds to make sure that they are 
paired up.

The code on the screen shows how Catlab lets you declare a custom data type like 
this. 

*CLICK* You see here we’ve represented a pattern with a water molecule and a C-
F bond. Constructing instances of this datatype can be done in many ways, 
ranging from low-level imperative operations to high level constructions. t In 
any case, you just need to construct this database instance here. Now we want 
to create the rewrite rules.

18



C-sets are a generalization of typed graphs, although they are closely related. We 
can faithfully convert a C-Set like the one on the bottom into the typed graph 
above. Because this conversion is faithful in a way that category theory can 
make precise, many algorithms that operate on typed graphs will compute the 
correct thing for C-sets.

On the right, there is a valid typed graph but it’s not a valid C-set for a variety of 
reasons, for example there are multiple edges assigned as delta-2 of t1, and e1 
has zero vertices assigned as its source.

19



On the right, there is a valid typed graph but it’s not a valid C-set for a variety of 
reasons, for example there are multiple edges assigned as delta-2 of t1, and e1 
has zero vertices assigned as its source.

20



It is a valid C-set on this schema, where we’ve replaced all the arrows with a span 
of arrows, i.e. replaced functions with relations. So while C-sets can handle the 
looseness of relations by choice, it is more expressive because it can encode 
the constraint of functions.

WHY USE GROTHENDIECK TO COMPUTE SECOND SCHEMA BOTTOM RIGHT?

21



A quick note on performance is that some of the data of typed graphs is encoded 
STRUCTURALLY in C-Sets, and that allows them to be linearly more memory 
efficient, and their memory is also layed out efficiently. Something we didn’t 
take advantage of here was the fact that the foreign keys of a database can be 
indexed, leading to some algorithms having different computational 
complexity. In fact, finding all homomorphisms is such an algorithm, so we will 
want to make a mature implementation of that that uses joins.

22



There are situations in which different rules call for different kinds of rewriting, 
even in the same simulation. 

This is why the semantics of the rewrite rule is data attached to the rule itself, and 
the interface for using the rule is identical.

23



The most interesting thing about the sesqui pushout for me was that the equations 
of the schema 

24



WIKI would be nice.

25



A quick note on performance is that some of the data of typed graphs is encoded 
STRUCTURALLY in C-Sets, and that allows them to be linearly more memory 
efficient, and their memory is also layed out efficiently. Something we didn’t 
take advantage of here was the fact that the foreign keys of a database can be 
indexed, leading to some algorithms having different computational 
complexity. In fact, finding all homomorphisms is such an algorithm, so we will 
want to make a mature implementation of that that uses joins.

26



You can get a lot of mileage out of the language I’ve just described, but I’ve found 
that more features are helpful for using rewriting to accomplish practical 
computations.

Firstly, you may want to match certain attributes without knowing exactly what 
they are ahead of time. In the case of our chemistry example, the only 
attribute in the schema is the atomic number (in a database, we think of 
attributes as plain old columns with real-world data, rather than foreign keys 
pointing to some other table). Technically speaking, maps between C-Sets are 
required to agree exactly on attributes, so if you label an atom as carbon in 
your pattern, it can only match with carbon atoms. But what if we want to 

27



Negative application conditions add an extra map to the rewrite rule with the 
following meaning: it embeds the pattern L in some larger context that 
specifies when NOT to apply the rule. Basically, when we find a match to G, we 
need to check if there exists a map from N to to G such that this triangle 
commutes, i.e. does there exist a squiggly map such that taking the ‘n’ 
morphism and then the squiggly morphism is identical to taking the match 
morphism ‘m’.

A chemistry-relevant instance of this is the “tert butyl” group, which chemists use 
to prevent reactions from happening at certain parts of a molecule they wish 
to prevent. It’s a big bulky thing that blocks even reactive molecules like 
fluorine.  By adding this NAC, we can better represent the underlying 
chemistry.

28



We can perform rewriting in other categories in Catlab, such as the category of 
structured cospans. These represent things with an interface.

29



We have support for limits and colimits of diagrams, of which distributed graphs 
are a special case. So if we can come up with an algorithm for pushout 
complement of these objects, we will be able to perform rewriting on them.

30



31



The last example I want to highlight is equational reasoning.  This is 1*x*x*1
*click*Here the semantics of a rewrite rule is to say: X is equivalent to Y means I 

can replace X with Y whenever I see it.
However we can also do this in a non-destructive way when we represent 

expressions as wiring diagrams, where you view information flowing from left 
to right, and the boxes as operations.

For example, here we have the expression X times 1, and if we were to assert an 
equivalence between this and a bare wire which simply passes along its input, 
this would be 

Equivalent to adding a wire which connects “x” to “x*1”, which tantamount to 
asserting their equivalence in this wiring diagram language.

*CLICK* So now let’s apply this to a real term which is 1*x times x*1 
*CLICK* we see that applying the rewrite rule has added the information of the left 

identity rule to our graph by collapsing certain nodes together.
*CLICK* applying a right identity rule allows us to see that our result is computable 

merely as x*x which is an optimized program relative to the starting point.
This process is also called “equality saturation” in the language of e-graphs, which 

is a great technique for maintaining lots of information about equivalent 
expressions in a compact way.

32



33



I’d like to thank all these people for welcoming me and being such fun 
collaborators!

34


