UF

Computational category-
theoretic rewriting

Kris Brown, Tyler Hanks, Evan Patterson, James Fairbanks

08.07.22

Hi, so we’ve written a quite applied paper which | want to talk about, but | also
want to take this chance to share our broader vision of applied category
theory.

So in fact I'll start with that overview to give some context into how we view this
graph transformation project.

Status quo: Model as opaque code

wnw

2 H, + 0, &> 2 H,0. Mass-action kinetics. Compare to experimental data and plot.

wnw

def main():

real_data = [0.0101,

0 .069,

0.076, 0.083, 0.089, 0 .130, 0.135,
0.140, 0.145, 0.150, 0. . . . 0. .179, 0.183,
0.186, 0.190, 0.193, 0 .215, 0.218,
0.221, 0.224, 0.227, 0

H2,02, H20 = 1.0, 2.0, 0.0

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step)
rate = 0.5 * H2**x2 * 02
H2 -= 2xratexdt
02 -= ratexdt
H20 += ratexdt

2UF

Many tasks we’d like to do

mathematical expressions).

cannot be done with
arbitrary code (nor

Update/repair code when
assumptions change

Explore alternate reaction
networks to fit the data

Generate the entire code from
just declaring the reaction

Check if another model is
the same / a submodel

L) * Easily alter semantics (e.g.

plot(results, real_data) stochastic-based simulation)

So we are trying to reform various practices in the real world, where a lot of
scientific and engineering tasks are being represented in very opaque formats
that make automatic reasoning and analysis nearly impossible. An example is
the random scripts that a scientist might string together to perform a
simulation of a chemical reaction network, as shown here. Although it might
seem like a rigorous model in the language of mathematics or formal logic
would be an improvement, we actually view these on par with each other, as
they are all perfectly formal languages, perfectly powerful syntaxes, and
therefore very hard to reason about.

Some brave people work on that, but, rather, we want to design software that
allows people to work in restricted syntaxes that can be reasoned about, so
that we can do things like update assumptions in a meaningful way, explore
spaces of models, generate code automatically, check for equality and
substructure relations, and easily alter the semantics.

Our paradigm example for this kind of thing is the representation of chemical
reaction networks as Petri nets.

Model as functor from syntax category

Infect:

- Recover

- -Q

$2UF
E @R

Ho8H
(o=l =le)

s
i
3

Specifying a reaction network as a
Petri Net allows for automatically

generating a simulator program.

Time

Here’s an example with the SIR epidemiology model, where the blue dots say that
there exist susceptible, infected, and recovered people. The left box is a

transition that says a susceptible person can
to make two infected people, and the other

at some rate.

combine with an infected person
box says infected people recover

We can actually use a trivial version of DPO that operates on sets rather than
graphs and generate rules which can perform a discrete time simulation.
Looking at each transition gives us such a rewrite rule.

Slice categories capture constraints :2UF

Model extended with extra transition

Mosquito Mediated SIR Model

* Homomorphisms effectively t \?(

assign “types” to elements of ,\./’

the domain model. F

* Homomorphism search is

type inference . .

Demand_ing that a C—Set Host-Vector Model
morphism exists into some fixed

model is a constraint. (! !

-

We can also have a syntactical notion of constrained Petri nets by considering slice
categories. The set of Petri nets with a morphism into this particular model
here are those which have labeled their states as either host or vector, and the
only allowable transition types are ones that have one host in, one host out,
one vector in one vector out, or a host and vector interacting. If you said “this
is my class of models” and handed this off to your coworker who then added a
transition which converts hosts into vectors, you’d have an automatic
procedure for checking whether or not it’s a valid model, which is something
we lose when we say the model is the code that performs the simulation, or if
we work in a completely unconstrained mathematical language like ODEs.

JAMESHAS BETTER PIC

Pullbacks characterize stratification nUF

* How to combine basic ideas for models into complex models?

High-level operations on Petri nets like products QO

do the ‘right’ thing’ for reaction networks, unlike
for symbolic syntax or raw ODEs.

It also turns out that basic notions of limits and colimits correspond to useful
concepts when we’ve modeled our domain as a category.

Functors into model categories are model spaces :I UF

“City dimension”

Products of diagrams take ()
different ‘dimensions’ and yield a ko

product model for each
combination of elements from
each dimension.

“Disease dimension”

Here | show not a product of individual models but a product of diagrams, where
the category of diagrams in Petri have as objects functors into Petri.

We have an entire ‘dimension’ so to speak of transportation models and a whole
dimension of disease models.

If this process were coded up in a script, it would look like a nested for-loop for
each dimension. But now we’ve represented that process algebraically and can
compose it with other kinds of model space constructions (which are usually

limits or colimits in the category of diagrams, but could also come from graph
transformation specialized to this category.

Hierarchical operadic composition :iUF

Dz.a.tabase.q.uene.s can be built hleramhlcauy “Find all catalysts (that are the product of two reactions)
using a wiring diagram syntax. Raw SQL and the reactions they catalyze”
queries are not composable this way.

-
- ‘\

~

-
- ~

—
—_——— --55‘
SELECT state2.id ws™=™

FROM S AS statel, S AS state2, SELECT tranl.id, statel.id
T AS tranl, T AS tran2, FROM S AS statel, T AS tranl,
L A4S 2nl, I A8 in2, I AS inl, 0 AS outl
O RS outl, O &3 outs WHERE inl.is = statel.id,

WHERE inl.is = statel.id, inl.i _ 1.1id
inl.it = tranl.id inl.it = tranl.ic
outl.os = state2.id Outl.OS = Statel.ld
outl.ot = tranl.id outl.ot = tranl.id

The picture form has a special advantage in that it is is compositional — you could
take the query on the left and substitute it into the query on the right.

SQL code in contrast, doesn’t let you do this kind of substitution (you’d have to
write a special purpose algorithm to handle all the edge cases)

Transferability via functorial data migration :zUF

A :
i o rds 5
Migrate / merge data in different schemas | “om

rev Data Integrity Constraints E
Ay rev. from = from :
A,: rds . from = idRxNet
Asirev.rev =idpyy,

Data can be automatically moved between
different structures when our models change.
A tedious and error-prone process otherwise.

4 net

. rds

L oiny . « — . . solv

Cv/Reactlon __, I Simulation l >
sim

Solver l

Brown, Spivak, Wi ky. “Computational Data integration for Computational Science” (2019).

Generality is also related to transferability. If one's model of the world updates and
you want to migrate your infrastructure from the old to the new, it’s possible
to do this knowing just from declaring the relationship of the structure of the
old data to the new data.

In particular we can migrate a set of rewrite rules from one model to another if
this can be done functorially.

This can’t be done when the model is a uniform block of arbitrary programming
language code.

Two broad strategies for computational category theory

Math
CoC
HoTT encoding
System F
Logic

Operads
SMCs
Categories
A.C.T. Categorical
Constructions
Catlab

. ! DisCoPy
YMPL Mathlib/CT

agda-categories

> Code

Curry-Howard
Coq, Lean, Agda

iUF

Outline

Introduction

* A paradigm of computational category theory

Background
* What are C-Sets?
* Relation between C-Sets and typed graphs

Results

* Performance / high-level comparisons
* Extensions

* Applications

Takeaways

SUF

10

Background: What are C-Sets? 2UF

Generalizes a broad class of data structures,

* many generalizations of graphs (e.g. directed, symmetric, reflexive)
* tabular data (e.g. data frames)

* combinations of the two (e.g. weighted graphs, relational databases)

Parameterized by “C”, which is a schema.
* Assign a set to each vertex in C
* Assign a function to each edge in C

A C-Set isn’t a specific data type, but rather once you provide a “C”, you get a data
type. This “C” plays the role of a schema for a relational database.

The category theoretic definition of a C-set is a functor from C (which is a category)
to Set. But all that means is that you assign a set for each vertex in C, a function
for each edge in C, and you also satisfy equational laws that C has. Let me show
some examples.

11

Background: What are C-Sets?

Generalizes a broad class of data structures,
* many generalizations of graphs (e.g. directed, symmetric, reflexive)

* tabular data (e.g. data frames)

* combinations of the two (e.g. weighted graphs, relational databases)

Parameterized by “C”, which is a schema.
* Assign a set to each vertex in C
* Assign a function to each edge in C

1,2,2)
/N /ﬂ
‘ot 2,3,3]
Mult |, .,
D e ——— e

\iGraphs —)

:

-’

@

UF

Here on the top left is the schema for graphs. If you plug this in as “C”, a C-set
contains the data of a graph. Note we are using that strategy of representing
sets as just vectors [1,2,3,...] and functions as vectors. If we want to represent
this graph here at the bottom, we say that the edge and vertex sets have three

elements, and these functions here define source and target.

12

Background: What are C-Sets?

Generalizes a broad class of data structures,
* many generalizations of graphs (e.g. directed,
* tabular data (e.g. data frames)

symmetric, reflexive)

* combinations of the two (e.g. weighted graphs, relational databases)

Parameterized by “C”, which is a schema.
* Assign a set to each vertex in C

* Assign a function to each edge in C . f —
a p " e EE e
src [1,2,2] it ot B \“; — ~ S
\ [3] [3] 2 recovery
tot 2,3, 3] Bipartite
Muld |, multi ‘E]
. e — e []
QlGraphs ‘”/ \digraphs _® //

2UF

N
is ’y

State

Name
1 S
2

Slightly more complicated is this schema for bipartite graphs. We visualize these by
making one vertex type blue and the other orange, and we have two types of

arrows each with their own source and target functions.

13

Background: What are C-Sets?

Generalizes a broad class of data structures,

* many generalizations of graphs (e.g. directed, symmetric, reflexive)

* tabular data (e.g. data frames)

* combinations of the two (e.g. weighted graphs, relational databases)

Parameterized by “C”, which is a schema.
* Assign a set to each vertex in C
* Assign a function to each edge in C

~

1,2,
/—ﬂ /N
E_.V 3 _ [3]
‘ot 2,3,3]
Muli
[] —) [] -y []

QiGraphs)

Efficient due to Julia’s macro system +

JIT compilation

iUF

N
" Vo

N Pe

Bipartite

multi
digraphs

State

Name
S

1
2
3 R
Input| is | it / Output | os | ot |
11 12 1|
2 1211 2 |2]1]
3 2 12N / | 312
Transition Name
1 infection
2 recovery

oome

As a side note, despite the variety of things that can be expressed, Julia allows for

these data types to be implemented efficiently.
For example, consider the C-set which encodes sparse graphs
This was benchmarked against Julia’s native graph library, Lightgraphs, and

performed competitively.

14

2D Semi-simplicial set C-set +2UF

Indexing Schema: A2

h
src
e Y
s tgt
O1;8rc = Oy 8rc
Oy;tgt = Os;tgt
Oostgt = 03581

Just two more examples. This first one would be a C-set to define two-dimensional
semisimplicial sets. This allows us to talk about graphs where SOME triples of
edges can form triangles.

15

2D Semi-simplicial set C-set

Indexing Schema: Az Example instance

o

sre Va
T dEp— v .

- tgt E
D3

- _ Vi V2
O1;8rc = Oy sre
81 f(]f = '()3; f(]‘[' E2 Es
Oastgt = 0Os;s1C Vs

iUF

Here’s a smaller example of something we can represent. Two triangles which
share one of their edges.

16

2D Semi-simplicial set C-set

Indexing Schema: Az Example instance

& sre Va

e e ¥ ! .
tgt

93

- - Vi Vz

O1;8rc = Oy;8rc

Optgt = Osstgt E Es

Oaitgt = Os;sre Vs

iUF

Database representation

T d1 | 92 | 93
1 11215
2 4 [3]5
E src | tgt
7
2
4

< |OO|NO|NOf |

oo | <

The database style representation looks like this. Note we have two triangles, five

edges, and four vertices.

17

Chemical Species C-Set

using Catlab, Catlab.Theories, Catlab.CategoricalAlgebra

apresent TheoryChem(FreeSchema) begin
(Molecule,Atom,Bond) :: Ob
inv ::Hom(Bond, Bond)
atom:: Hom(Bond, Atom)
mol :: Hom(Atom, Molecule)
Num:: AttrType
atomic_num:: Attr(Atom, Num)

inv -+ inv = id(Bond)
end

Macset_type Chem_Generic(TheoryChem)
const Chem = Chem_Generic{Int}

7

v Q@

o

Molecule

22UF

molecule ~
“,,,,"T S~._ atomic number

l'n\'C Bond e N

inv,inv = idgona

Bond |atom | inv
Atom | mol
1 1

._.
T O|TE|E[O]*
A& w e
[T I N N I)
mloa|w|s|=]|N

So now let’s return to our chemistry problem. The trickiest issue here is
representing chemical bonds as undirected. Although directed graphs were
very easy to represent, with two sets and a src+tgt function, undirected graphs
can be encoded by having a Bond table where two different rows of the table

get used to represent a single bond.

We require an involution function on the set of Bonds to make sure that they are

paired up.

The code on the screen shows how Catlab lets you declare a custom data type like

this.

CLICK You see here we’ve represented a pattern with a water molecule and a C-
F bond. Constructing instances of this datatype can be done in many ways,
ranging from low-level imperative operations to high level constructions. t In
any case, you just need to construct this database instance here. Now we want

to create the rewrite rules.

18

Background: Relation between C-Sets and typed graphs

V4

Va

2UF

C-sets are a generalization of typed graphs, although they are closely related. We
can faithfully convert a C-Set like the one on the bottom into the typed graph
above. Because this conversion is faithful in a way that category theory can
make precise, many algorithms that operate on typed graphs will compute the

correct thing for C-sets.

On the right, there is a valid typed graph but it’s not a valid C-set for a variety of
reasons, for example there are multiple edges assigned as delta-2 of t1, and el

has zero vertices assigned as its source.

19

iUF

Valid typed graph, invalid C-Set for our schema

Background: Relation between C-Sets and typed graphs

V4

E1 Es
h
/ . src ; V2
[Y —
— tgt
3 E2 Es

20
Vs

On the right, there is a valid typed graph but it’s not a valid C-set for a variety of
reasons, for example there are multiple edges assigned as delta-2 of t1, and el
has zero vertices assigned as its source.

20

Background: Relation between C-Sets and typed graphs

V4

Va

Valid typed graph, invalid C-Set for our schema

But, representable as a C-Set on this schema:

VNN

T +— 6 — E 14

NSNS

SUF

21

It is a valid C-set on this schema, where we’ve replaced all the arrows with a span
of arrows, i.e. replaced functions with relations. So while C-sets can handle the
looseness of relations by choice, it is more expressive because it can encode

the constraint of functions.

WHY USE GROTHENDIECK TO COMPUTE SECOND SCHEMA BOTTOM RIGHT?

21

Double pushout rewriting :"UF

G |
1 = homomorphism(mesh_I, mesh_L)
) r = homomorphism(mesh_I, mesh_R)
s tgt
O1;src = Oy sre mesh_H = rewrite(rule, mesh_G)
Oitgt = Ostgt
Oy;tgt = 0Os;src

match_map = homomorphism(mesh_L, mesh_G)

mesh_H = rewrite_match(rule, match_map)

A quick note on performance is that some of the data of typed graphs is encoded
STRUCTURALLY in C-Sets, and that allows them to be linearly more memory
efficient, and their memory is also layed out efficiently. Something we didn’t
take advantage of here was the fact that the foreign keys of a database can be
indexed, leading to some algorithms having different computational
complexity. In fact, finding all homomorphisms is such an algorithm, so we will
want to make a mature implementation of that that uses joins.

22

Extension: SPO

L rule R

matchl
-

G

rw =

rw_spo
rw_sqpo

Rule(l, r)

Rule{:SP0}(1,r)
= Rule{:SqPO}(1,r)

2UF

src
tgt
Oo; sre

(‘)3 3 f(]f
O3; sre

There are situations in which different rules call for different kinds of rewriting,
even in the same simulation.

This is why the semantics of the rewrite rule is data attached to the rule itself, and
the interface for using the rule is identical.

23

Extension: SqPO ::UF

. [] L. [] | ® °
ml FPB

-

c =(ms 2

a s

o1

e s 1 —

O3 tgt
Oy;sre = g sre
(91) f,gt = 03; t{]t
Oyitgt = Og;src

24

The most interesting thing about the sesqui pushout for me was that the equations
of the schema

24

iUF

Comparisons
Software 0 Gt L b update UL By v, Apy
AGG[29] Y N S N 217 Y N Both
Groove[23] Y N S N 2021 Y N App
Kappal13] N N N 2021 Y Y App
VeriGraph[l] Y N D Y 2017 N Y Lib
ReGraph[12] Y N Sq N 2018 N Y Lib
Catlab[11] Y Y DSSq Y 2022 N Y Lib

WIKI would be nice.

25

Catlab C-sets vs Catlab typed graphs <UF

Rewrite Performance Homomorphisms Performance Memory Usage
» 10" 12
® Typed graphs N ® Typed graphs P ® Typed graphs
06 - @ C-sets o : ® C-sets 210 - @C-sets

/.._{ 10 1 ~

% * O ! % °
~ 0.4 o 10 - :,:L

g J 1 = 6
= ~ =

e = 10 5 .
0.2 é
10 z

).0 10 0

5k 10k 15k 20k 10+¢ 10" 100 2 5k 10k 15k
Number of triangles in grid Number of triangles in grid Number of triangles in grid

A quick note on performance is that some of the data of typed graphs is encoded
STRUCTURALLY in C-Sets, and that allows them to be linearly more memory
efficient, and their memory is also layed out efficiently. Something we didn’t
take advantage of here was the fact that the foreign keys of a database can be
indexed, leading to some algorithms having different computational
complexity. In fact, finding all homomorphisms is such an algorithm, so we will
want to make a mature implementation of that that uses joins.

26

Variables and Negative Application Conditions :?UF

Finer-grained control over possible rewrites

G, ®

G © @ ©

You can get a lot of mileage out of the language I've just described, but I've found
that more features are helpful for using rewriting to accomplish practical
computations.

Firstly, you may want to match certain attributes without knowing exactly what
they are ahead of time. In the case of our chemistry example, the only
attribute in the schema is the atomic number (in a database, we think of
attributes as plain old columns with real-world data, rather than foreign keys
pointing to some other table). Technically speaking, maps between C-Sets are
required to agree exactly on attributes, so if you label an atom as carbon in
your pattern, it can only match with carbon atoms. But what if we want to

27

.
Variables and Negative Application Conditions :" UF

Finer-grained control over possible rewrites

Negative application conditions add an extra map to the rewrite rule with the
following meaning: it embeds the pattern L in some larger context that
specifies when NOT to apply the rule. Basically, when we find a match to G, we
need to check if there exists a map from N to to G such that this triangle
commutes, i.e. does there exist a squiggly map such that taking the ‘n’

morphism and then the squiggly morphism is identical to taking the match
morphism ‘m’.

A chemistry-relevant instance of this is the “tert butyl” group, which chemists use
to prevent reactions from happening at certain parts of a molecule they wish
to prevent. It’s a big bulky thing that blocks even reactive molecules like
fluorine. By adding this NAC, we can better represent the underlying
chemistry.

28

Extension: Structured Cospan Rewriting :: UF

a.)
Li L1 Liout=L2; L2 L2.ow
---------- *--
*--Q = G'Q____' ______)0 0___-'9’ .
' ------------- .- '
0+ 0+Q ®-0-0
o ..Q a EED SUTEP L Tout R
R R1 Riou=R2 R2 / / /
b) . e by L.../‘ l,,,/ R.../
-0 =@ Q-
‘ Gﬂ; H
/
mﬂo] /c H
9 QO o G " H
- © o 29

We can perform rewriting in other categories in Catlab, such as the category of
structured cospans. These represent things with an interface.

29

Extension: Distributed graphs :: UF

30

We have support for limits and colimits of diagrams, of which distributed graphs
are a special case. So if we can come up with an algorithm for pushout
complement of these objects, we will be able to perform rewriting on them.

30

Number

Application: Agent based modeling

500
400
300 +
200

100 +

25

75

100

Number

80

6

o

4

o

2

o

o

0 5 10 15

+iUF

Age bins

Requires scheduling events to happen in the future after a match.
So we must compose match morphism with derived rules.

31

31

otimes I : ! UF
otimes [——se—s .
otimes —’//’//"

4

Equational reasoning

Use rewriting to prove
(1*x) * (x*¥1) = (x*x)

TN

munit
otimes \
otimes —se—»
Left identity rule]
R otimes

munit

X
—_] x*1
When you see otimes [—se—s

this pattern... .

munit .
otimes

otimes

You can add
this pattern as a
parallel path.

otimes

P

munit

The last example | want to highlight is equational reasoning. This is 1*x*x*1

*click*Here the semantics of a rewrite rule is to say: X is equivalent to Y means |
can replace X with Y whenever | see it.

However we can also do this in a non-destructive way when we represent
expressions as wiring diagrams, where you view information flowing from left
to right, and the boxes as operations.

For example, here we have the expression X times 1, and if we were to assert an
equivalence between this and a bare wire which simply passes along its input,
this would be

Equivalent to adding a wire which connects “x” to “x*1”, which tantamount to
asserting their equivalence in this wiring diagram language.

CLICK So now let’s apply this to a real term which is 1*x times x*1

CLICK we see that applying the rewrite rule has added the information of the left
identity rule to our graph by collapsing certain nodes together.

CLICK applying a right identity rule allows us to see that our result is computable
merely as x*x which is an optimized program relative to the starting point.

This process is also called “equality saturation” in the language of e-graphs, which
is a great technique for maintaining lots of information about equivalent
expressions in a compact way.

32

Future work :I UF

Library is still in its infancy, many planned improvements:

* More advanced scheduling (what is the right formalism for this?)

Support for debugging rewrite rules (see why a match was rejected that you expect to take place)
* Performance (incremental search for matches, how do we do this?)

* Search up to isomorphism (remove symmetries in results to avoid double counting)

* More robust parallelization of rewrite execution

L AlgebraicRewriting.l

Or@0

33

Thanks!

+IUF

Evan Patterson

Sean Wu

T. Hanks
Sophie Libkind

Institute for Health Metrics
and Evaluation

ENE
{ Andrew Baas

\

TOPOS U i
Georgia & Research
o Tech || Institute

UNIVERSITY of s

INSTITUTE FLORIDA

David Spivak

James Fairbanks

I"d like to thank all these people for welcoming me and being such fun
collaborators!

34

