
Hi, I’d like to discuss some work we did this year at the Generalized Algebraic 
Techniques for Applied Science research group led by James Fairbanks.

We're very used to searching through spaces of models where we have a 
parameter space of continuous values, but in contrast we’re looking for a way 
to search through discrete spaces of models that have variations in structure, 
rather than parameters.

We’re not going to make this process fully automatic, but we’re going to give a 
language for domain experts to work with that will let them work declaratively, 
compositionally, and hierarchically.

1



I’ll start by motivating the idea of combinatorial representations of scientific 
models, then I’ll go over some constructions in category theory, and then show 
you how we apply it.

2



In the real world, a lot of scientific and engineering tasks are being represented in 
very opaque formats that make automatic reasoning and analysis nearly 
impossible. 

An example is the random scripts that a scientist might string together to perform 
a simulation of a chemical reaction network, as shown here. 

Although it might seem like a rigorous model in the language of mathematics or 
formal logic would be an improvement, we actually view these on par with 
each other, as they are all perfectly formal languages, perfectly powerful 
syntaxes, and therefore very hard to reason about. 

We want to work in restricted syntaxes which enables us to do lots of cool and 
useful things with our knowledge automatically.

I'll give some quick examples of the first four of these example tasks that we are 
enabled to do by working with combinatorial models, and the bulk of the talk 
will focus on number 5.

3



Here’s an example with the SIR epidemiology model, where the blue dots say that 
there exist susceptible, infected, and recovered people. The left box is a 
transition that says a susceptible person can combine with an infected person 
to make two infected people, and the other box says infected people recover 
at some rate. On top we show how this is captured by a C-set, which is a 
copresheaf or functor into Set from a small category C with four objects and 
four generating morphisms.

4



We can map the components of this combinatorial representation into inputs for 
an ODE problem that can be solved to perform a simulation.

5



But separating the syntax and semantics of our model now makes it easy to map 
the transitions to a certain flavor of rewrite rules, and then perform a discrete 
time simulation to get a stochastic model semantics. 

6



We can also view Petri nets being given another semantics, that of queries over a 
database of chemical reactions (i.e. we look for homomorphisms from the petri 
net into the database).

If we worked directly with the semantics as our model, we’d discover it’s quite 
difficult to substitute queries inside each other, yet this is very straightforward 
thing to do working in a syntax category of undirected wiring diagrams.

7



It also turns out that basic notions of limits and colimits correspond to useful 
concepts when we’ve modeled our domain as a category.

Sophie talked about this yesterday in her demo.

8



Here I show not a product of individual models but a product of diagrams, where 
the category of diagrams in Petri have as objects functors into Petri.

We have an entire ‘dimension’ so to speak of transportation models and a whole 
dimension of disease models.

If this process were coded up in a script, it would look like a nested for-loop for 
each dimension. But now we’ve represented that process algebraically and can 
compose it with other kinds of model space constructions (which are usually 
limits or colimits in the category of diagrams, but could also come from graph 
transformation specialized to this category. 

a) the ground truth model
b) the space of possible models exploring different assumptions about disease 

dynamics and geography
c) the resulting quality of fit plots. The SIRD 2-city model is the best, which 

recovers the ground truth.

The color coding in b) is the loss function value for the optimal parameters. This 
shows why a “set of models” is insufficient you really need the “space”. All the 

9



models in red are bad, we could prune that half of the space as a heuristic. All 
of the models above and to the right of SIRD_2 are basically going to have the 
same loss value because you can always set parameters to 0 and recover 
SIRD_2. This means we can stop once we hit SIRD_2.

This approach lets you take a category of models and “slap a geometry on there” 
then you can use that geometry to design more efficient algorithms. The more 
structure in the space, the more efficient the algorithms. A set has no geometry
so you just have to check them all. A graph lets you do some reasoning about 
neighborhoods. 

9



I’ll now introduce the category of diagrams

10



Here’s an example diagram in Petri, which is a functor from a small category into 
the category of Petri nets. 

We have a shape category, which is presented by a finite graph. For each object we 
give a Petri net, for every generating arrow we give a petri net morphism.

Later we will give this the interpretation of a space of models, when our notion of 
model happens to be a Petri net.

11



Lax version of slice category in Cat gives us bicompleteness.

12



We’ve seen stratified petri nets as the product of simpler petri nets. But we can 
take that one more level meta,

the simpler petri nets are often living in their own dimensions, and we are 
interested in all combinations from the different dimensions. 

So it turns out this multidimensional model exploration is precisely the product of 
model spaces

This is something people obviously already do, but they’re doing this with a double 
for loop in a throwaway python script rather than working declaratively and 
compositionally.

13



Of course we don't always want just grid-like model spaces. Sometimes there are 
either-or decisions to be made, and this is captured with colimits. Here, a 
pushout of two dimensions that share the same first model leads to a 
branching model space (with no changes to the Petri nets underneath).

But then you may ask what happens if they're not equal. That’s actually an
interesting and practical situation.

14



Suppose my apex of a pushout of diagrams has one object, and that object is 
relating the 1 model visualized on the left to the A model visualized on the 
bottom, which is the SIR model. 

By taking a pushout of Petri nets, this would glue the infected to death transition 
to the SIR model and give you the model that would live under the A1 object in 
the colimit diagram. However, there is a morphism from A1 to B1, and we need 
to send that death state somewhere in B. 

But our A to B data says nothing about where death should go, so in fact we need 
to freely add it (this is the left kan extension at work). So in fact, we've glued 
the death transition to the entire disease dimension implicitly by gluing it to 
the SIR model explicitly. 

So this was just a small taste of the kind of powerful language you have by working 
with limits and colimits

15



So those examples can be thought of as building blocks, and in reality complex 
model spaces would be built by assembling those in a coherent way. Wiring 
diagrams offer a nice visual syntax for these recipes of combining these 
operations, and they nicely separate the composition strategy from the actual 
inputs that will ultimately get plugged in. 

I've shown here an example of combining that combines the three examples we 
just saw into one recipe for a composite model space.

This isn’t a code talk, but we have in all this implemented in ModelExploration.jl, 
which depends on Catlab.jl. So you really just need to define these three 
diagrams, provide the data of the pushout and call product or coproduct on the 
diagrams and you’ll actually compute the result.

Let's see what that is.

16



17



18



So, moving forward, we glue the death transition to the disease dimension, and 
that gives us this bottom line of models. We coproduct that with the diesease 
dimension that does not have death glued to it, because suppose we're not 
sure whether we want that in our model - which gives us the first vertical 
sequence of models. So this front face, in the plane of the page, is the model 
space that lives on this wire going between the sum and the product. When we 
product it with an n-city model, you get the dimension that goes into the page. 

This could be an infinite model space in all of these dimensions, but for now let's 
just work with the 8 models we see here.

19



So I will present aomw work by Peschke and Tholen (2020) who worked out what 
the limits and colimits are in this category. Their description was quite high 
level and concise, and in my struggle to implement these limits and colimits on 
a computer I had to really unpack the description, so let me share some of 
their results in a more concrete fashion.

Here’s a generic picture of a morphism in the product of two diagrams, to give 
some intuition. The shape is just the product of the shapes of the two 
diagrams. We need a functor from this shape into the base. You simply do the 
natural thing on objects, which takes a product of objects to the product their 
corresponding objects in the base category. We need a morphism in the base 
between the two product objects, but we can obtain this using the universal 
property of products as shown below, since we can map into each of the 
components of y times n.

20



Just as the product of diagrams translated neatly into computing a product shape-
wise and using products in the underlying base category, an equalizer diagram 
has as its shape an equalizer of the functors that constitute the shape 
components of the diagram morphisms.

It turns out we can compute where to send the objects of an equalizer to by using 
equalizers of data in the diagram maps of the morphisms. Essentially, the 
constraint these diagram maps are natural means that whenever we have big F 
and big G equalizer a morphism in A, they will have parallel morphisms in their 
diagram map which can be equalized. Again we can use a universal property to 
determine where the morphism in the equalizer must map to.

So overall, limits of diagrams are a very intuitive extension of limits in the base 
category.

21



Coproducts are also simple – again we’re going to assume the right thing to do is 
to take a coproduct of the shape categories and then do something coproducty 
underneath. 

22



Lastly, then, we want to take a coequalizer of the shape maps and do something 
coequalizer-y in the base category. But you quickly find there is no obvious 
such thing to do. You don’t have parallel maps in the base category to 
coequalizer, so we need to perform this construction here, which I’ve shown as 
a commutative diagram in the category of diagrams. If you want intuition for 
this or an example, I have some hidden slides and can discuss that if we have 
extra time.

23



Coproducts are also simple – again we’re going to assume the right thing to do is 
to take a coproduct of the shape categories and then do something coproducty 
underneath. 

Lastly, then, we want to take a coequalizer of the shape maps and do something 
coequalizer-y in the base category. But you quickly find there is no obvious 
such thing to do. For example, consider diagram morphisms F,G with the 
following shape maps. We have a morphism for F and G in the underlying base 
category, but that can’t be coequalized b/c they may not share the same 
target. Moreover it’s not clear what to assign to C2 or the morphism. 

24



Here is the commutative diagram that describes the algorithm for constructing the 
coequalizer. The morphism data must all be coerced into the form of diagrams 
of shape C, and only then will the data of F and G be coequalizable. 

https://q.uiver.app/?q=WzAsMTIsWzAsMSwiQV8xIl0sWzIsMCwiQl8xIl0sWzIsMSwi
Ql8yIl0sWzIsMiwiQl8zIl0sWzQsMCwiQ18xPT8iXSxbNCwyLCJDXzI9PyJdLFswLD
MsIkFfMSJdLFsyLDMsIkFfMSJdLFswLDQsIkJfMStCXzIiXSxbMiw0LCJCXzErQl8zIl0
sWzAsNSwiQ18xIl0sWzIsNSwiQ18yIl0sWzAsMSwiRiIsMCx7ImxldmVsIjoyfV0sW
zAsMiwiRyIsMix7ImxldmVsIjoyfV0sWzIsMywiYiIsMl0sWzQsNSwiYz0/Il0sWzEsN
CwiSCIsMCx7ImxldmVsIjoyfV0sWzIsNCwiIiwxLHsibGV2ZWwiOjJ9XSxbMyw1LCIi
LDIseyJsZXZlbCI6Mn1dLFs2LDcsImlkIl0sWzgsOSwiaWRfe0JfMX0rYiJdLFs2LDgsIl
xccGhpX0YiLDIseyJjdXJ2ZSI6MX1dLFs2LDgsIlxccGhpX0ciLDAseyJjdXJ2ZSI6LTF9X
SxbNyw5LCJcXHBoaV9GIiwyLHsiY3VydmUiOjF9XSxbNyw5LCJcXHBoaV9HO2IiLD
AseyJjdXJ2ZSI6LTF9XSxbMTAsMTEsIiEiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUi
OiJkYXNoZWQifX19XSxbOSwxMSwiXFx0aW55IGNvZXEiLDAseyJzdHlsZSI6eyJoZ
WFkIjp7Im5hbWUiOiJlcGkifX19XSxbOCwxMCwiXFx0aW55IGNvZXEiLDAseyJzdH
lsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XV0=

25



For this specific example, if we push “A” into the diagram of shape of C with a left 
kan extension, we're sticking the A1 into a C1 shaped hole. The map lowercase 
c needs to map that to something, so we need to add another A1 into the C2 
shaped hole and give an identity map.

26



If we're pushing B into C, B1 and B2 are both stuck into the C1 shaped hole, and B3 
gets stuck into the C2 shaped hole. However, we know how the B2 
components gets mapped to B3, whereas we have nothing to say about how 
B1 gets mapped there, so in fact we need again to create another copy of B1 
and map to it via the identity.

27



It turns out the universal property of left kan extensions gives us maps between 
these objects and in fact they are parallel arrows, meaning we can coequalize 
them and get one object in the base category for every object in C!

28



When we do that, we can use the universal property of coequalizers to get what 
morphism lowercase c gets mapped to. 

Hopefully this gives some intuition for the motivation of this rather complex 
construction for coequalizers, at least relative to limits and coproducts. But 
with these constructions implemented in Catlab, we can now construct 
diagrams via limits and colimits, with the caveat that the left kan extension of 
finite diagrams can sometimes be infinite.

29



So now we’re going to apply the model space construction to a problem.

30



So remember, this was our resulting model space. we're going to explore these 8 
models to find which one best fits some real world data we have. This is how 
we gain mechanistic understanding of natural phenomon - generating 
hypothesis and testing them.

31



Suppose we have real data that looks like the right (with some added noise).

32



Projection maps of (co)limits allow us to move data to/from the primitive model 
spaces to the composite model space. 

MORPHISMS IN THE CATEGORY: 
- push forward initial concentrations & parameters
- Have metric of complexity (if mono) breadth first search

- https://q.uiver.app/?q=WzAsNixbMSwwLCJQYXJhbV97QVxcdGltZXMgQn0iXSx
bMCwxLCJQYXJhbV9BIl0sWzIsMSwiUGFyYW1fQiJdLFs0LDAsIk9ic197QVxcdGltZ
XMgQn0iXSxbMywxLCJPYnNfQSJdLFs1LDEsIk9ic19CIl0sWzEsMF0sWzIsMF0sWz
MsNCwiXFxTaWdtYV9CIiwyXSxbMyw1LCJcXFNpZ21hX0EiXV0=

33



MORPHISMS IN THE CATEGORY: 
- push forward initial concentrations & parameters
- Have metric of complexity (if mono) breadth first search

- https://q.uiver.app/?q=WzAsNyxbMCwwLCJQYXJhbV97QVxcdGltZXMgQn0iXSx
bMCwxLCJQYXJhbV9BIFxcdGltZXMgUGFyYW1fQiJdLFszLDAsIk9ic197QVxcdGltZ
XMgQn0iXSxbMiwxLCJPYnNfQSJdLFs0LDEsIk9ic19CIl0sWzAsMiwiUGFyYW1fe0
ErQn0iXSxbMywyLCJPYnNfe0ErQn0iXSxbMSwwLCJcXGZvb3Rub3Rlc2l6ZSBjb21
tLlxcIG1vbm9pZCJdLFsyLDMsIlxcU2lnbWFfQiIsMl0sWzIsNCwiXFxTaWdtYV9BIl0
sWzEsNSwiXFxmb290bm90ZXNpemUgY29uY2F0IiwyXSxbNiwzLCJcXHBpX0EiXS
xbNiw0LCJcXHBpX0IiLDJdXQ==

34



By our loss function we can evaluate the best fit models for each of these petri 
nets and make some observations, such as two of the models here having 
extremely low error relative to the rest. However, because we restricted our 
model category to have monic morphisms, they also serve as a proxy for 
complexity. So we can take the least element among the collection of 
“accurate enough” models as our overall model selection function.

Important to note that the code we wrote does this pipeline automatically given a 
finite composite diagram.

35



36



37



Hidden slide: neural network architectures with reflexive graphs

38


